
52 OCR Output

An on-chip floating point processor (on some Transputers).

A timer.

A real time kernel for process scheduling.

An interface to external memory.

Four serial links which allow easy connection to other Transputers, Fig (2).

2 or 4 kbytes of fast static RAM.

An integer processor.

components packaged on a single chip:
A Transputer Fig (1) is a family of micro-computers which have the following

What is a Transputer?

the period of the school.
from a simple mono-processor program to quite complex multi-Transputer programs over
These lectures combined with the practical exercises should allow participants to progress

but can do with Occam.
contained in the language, explaining some of the things you definitely cannot do in Fortran
periodically with Fortran. We then go on to describe the parallel processing constructs
The approach taken will be to first introduce sequential features of Occam, comparing

developed by INMOS to support parallel processing on Transputers.
The aim of these lectures is to teach students how to write programs in the Occan language

Aims And Non Aims

ECP DIVISION, CERN, 1211 GENEVA 23, SWITZERLAND
R.W. DOBINSON, D.R.N. JEFFERY AND I.M. WILLERS

AN INTRODUCTION TO TRANSPUTERS AND OCCAM

53

FIG (2)

T8 T9 OCR OutputT7

T6T5T4

T3T2T1

F IG(1)

Event

lmedaca

External

Intedaca

Link

nmenmOn-chip
ot

4k bytes

Imedaca

um
Tmm

Services

Link

Services

processorSystem

32 bit

Floating Point Uni

54

FIG (4; Facts)

Pnocessoml
pnocessonc

Pnocassa Pnocesss

Pnocesson r>t=•o<zsscne OCR Output

***00658* l<—>lr>nocassz l’*’•0¢E$St l+**’lPF\O0ES$2

Flats)

pnocessa

PIDOESS1 ,4-—>(pqgggssg

microprocessor chips and languagesl
multiple processors. You might like to consider how you would do this with orthodox
Transputers, their links and Occam make it relatively easy to spread an application over
tig 5 shows three processes running on three separate processors. We shall see that
connected via channels . Fig 4 shows all the three processes running on one processor while
performance reasons, over several processors. Three processes are shown in fig.3
reside in a single processor or the program may be partitioned, most likely for
of mapping processes onto one or more processors, see figs 3,4,5. All processes could
loosely use process to mean a part of the overall program. There are various different ways
An application can be made up of a number of communicating processes. For the moment we

Some Simple Ideas About Processes

Transputers. Only a few microseconds setup time is required for a link transfer.
microseconds, and process to process link transfer rates of 1.7 Mbytes/s between two
1.5 to 3 Vax 11/780 equivalents. lt has a low context switching overhead. a few
The Transputer that you will use is the 20 MHz T80O chip it has a computational power of

Performance

55 OCR Output

lEEE floating point number.64 bitREAL64
IEEE floating point number.32 bitREAL32

64 bil signed integer.INT64
32 bil signed integer.INT32

signed integer.16 bil|NT16
Transputers such as T222)

(32 bits for the T800 we shall be using, 16 bits for 16 bil
Generic signed integerINT
Integer value O to 255. Used for characters.BYTE
Boolean values true or false.

the following data types.
Unlike Fortran, Occam requires all variables to be declared before use. Occam recognises

Variables and Declarations

reserved keywordFUNCTION

—— illegal character $pointer$

-— contains a spacelast word

does not start with a letterlstnumber

—— illegal characterdata buffer

Illegal and flagged as such by the Occam compiler:

wR1TE.MT.REcoRp

OutChar

e1GoNE

Legal but discouraged in this course:

flagl
input.buffe:

charlie

dire.straighcs
Legal:

' Some examples of legal and illegal names.

can be confusing.
We recommend you use lower case names in your programs. Mixing upper and lower case

e.g. B0oL, ANY, ALT, PAR, SKIP, MMER

There are a number of reserved keywords which always use capital letters,

restriction. Occam is sensitive to the case of characters. Fred is different from FRED.
character. They are a sequence of alpha-numeric characters and dots. There is no length
Names of objects in Occam, like variables, procedures, etc. must begin with an alphabetic

Names Used in Occam

56 OCR Output

i.e. variable := expression

x := y+2

An assignment in Occam is ofthe form

Assignment

type and can be used anywhere an ordinary variable could be used.
{5] INT. Components of array variables behave just like ordinary variables of the same
This declares a two dimensional integer array. An array with four components each of type

[4] [5} rm: X;

Another example

unlike Fortran which would label the array 1,2,3,4,5.
A one dimensional integer array which has its 5 components labelled 0,1,2,3,4, this is

[5] INT x:

in the array. Example of declaring an array:
name. An object in an array can be individually referred to by a number stating its position
An array in Occam is a group of objects of the same type joined into a single object with a

Arrays in Occam

Note TRUE and FALSE are reserved keywords

VAL string IS “Hel10 world"

VAL start IS TRUE

VAL end IS FALSE

VAL ca1ibration.c0ns IS 6.1E—5(REAL64):

VAL pi IS 3.141592 (REAL32)

VAL character IS 'z' (BYTE):

VAL leap.yea: IS 366 (INT)

Constants can be defined in the following way using the keywords VAL and IS:

Constants

separated by commas. A line break can occur after a comma.
A declaration is terminated by a colon. Variable names in a multiple declaration are

stil]. .m01:e . junk:
INT16 junk, moxsejunk,
REAL32 floatingl, fl0ati¤g2
BYTE input . character

INT fred

Examples of declaring variables.

57 OCR Output

result. Examples ot expressions using these operators:
The boolean operators AND, OR and NOT combine boolean operands and produce a boolean

-—illeqal !2+3*4+5

The following expression is illegal and would be rejected at compilation time:

2+(3*(4+5)) -—answer 29

(2+(3*4))+S -—answer 19

(2+3)*(4+5) ——answer 45

Here are some more examples of arithmetic expressions:

This is all very like Fortran.

x REM y —— remainder when x is divided by y

- quotient when x is divided by yx/y
x*y -- multiply x by y
x—y subtract y from x
x+y —— add y to x

Arithmetic operators:
We introduce some of the most useful operands and leave out others for the moment.

excephon.
Note that the data types of operands in the expressions must be the same. Bit shifting is an

MUST be used to define the hierarchy of a complex expression.
operator precedence as in Fortran. All operators have the same priority. Hence parentheses
complex expressions can be constructed using operators and parentheses. There is no
has a value and a data type. The simplest expressions are literals and variables. More
combination with operators. An expression is evaluated and produces a result. The result
Expressions are made up of variables and literals (eg. 99, 42.3, 386.0E-2) in

Expressions

primitive processes later.
programs are built up as a combination of primitive processes. We will meet other
An assignment is an example of what is called in Occam a primitive process. All Occam

(later we will see how to convert).
assigned i.e. the Occam compiler would say " reaI.number := integer.number ” is not valid
The value of the expression must have the same data type as the variable to which it is

Note the use of := instead of just =

X - Y+2

cf Fortran

58 OCR Output

executed in sequence.
Take care, a SEQ is compulsory in Occam whenever several Occam statements are to be

been used to combine three primitive processes, three assignments, into a larger process.
only within the range of its indentation, as is the scope of its local variables. The SEO has
end of any level of indentation marks the end of the construction. The construction is defined
Other languages use {...} or begin end for this purpose, but Occam uses indentation. The
The three assignments are indented by two spaces to indicate the extent of the construction.

Why? Because as we shall see later they could be done in parallel!

after the other.
Unlike Fortran we have to specify explicitly that the three assignments must be done one

K = I+J+1l

J = ITHREE+I

I = ITWO+2

PARAMETER (ITwo=2, 1T1—tREE=3)

The Fortran equivalent is
k:= (i+j) + ll
j:= three + i

i:= two + 2

SEQ

VAL three IS 3(INT):

VAL two IS 2(INT):
INT 1, j, k

sequence'. Example using Occam,
The SEQ construction is the simplest we shall meet. lt says "do the following things in

The SEQ construction

(cha:>='a') OR (char<='z')
(x=y) AND (a<>b)
X=y

Examples of expressions using relational operators.

greater than or equal
less than or equal
greater than

less than

<> not equal
equal

Relational operators are:
Relational operators perform a comparison of their operands and produce a boolean result.

(aANDb) OR (cANDd)

FALSE OR x

x AND y

NOT FALSE

59 OCR Output

b:=b—i

a:=a+i

SEQ

SEQ i=0 FOR 100

b:=10000

a:=O

SEQ

INT a, b

Le.

put in another SEO.
lf we were to introduce another assignment in our fragment of Occam above we would need to

Note. you can jump out of a Fortran DO loop. You cannot jump out of a replicated SEQ.

Note, the Fortran DO loop can specify a step, a feature not included in the replicated SEQ.

99 CONTINUE

J=J+I

DO 99 I=·1, 100, 2

J=0

Compare this with a Fortran DO loop.

base FOR count

The replicator has the form

a:=a+i

SEQ 1= 0 Fon 100

a:=O

SEQ

INT a:

For example;

A process can be replicated to behave like a conventional counted loop.

The Replicated SEO Construction

:-(i+j) + 11 —- note parentheses

=th:ee + i

:=two + 2

—— statement

-— less than the following

-— comments cannot be indented
S EQ -- a comment

VAL three IS 3(INT)

VAL two IS 2(INT)

I NT irjrk:

The use of comments - a small digrassicn.

60 OCR Output

catch all then a STOP would occur it i is not equal to 1 or 2. We don't want thisl
in case none of the above is true. SKIP is just a do nothing action. If we did not have this
The final test uses the boolean constant TRUE (which is always true) and acts as a catch all

wrt its associated test.
Note that each test is indented two spaces wrt the IF, and each option is indented two spaces

then execute a SKIPSKIP

——TRUE if neither the above
—- set j equal to 10j:- 10

1-2 -- if 1=2 is TRUE then
—- set j equal to lj:= 1

i=l -- if i=1 is TRUE then

IF

Example;

STOP is executed.
iirst found to be TRUE, the associated option is executed. lf none of the tests is true then a
test (a boolean expression) in front of it. Each test is evaluated in sequence and, for the
An IF construction specihes a number of options (different processes) each of which has a

according to a condition i.e. a test. One form of conditional choice is the IF construction.
All programming languages need to provide a way for programs to do different things

The IF Construction

When this occurs TDS will be terminated. Normally this should be avoided!
program will result in an error flag being set on the BO08 board used in the lab exercises.
STOP stops the flow of execution, it is a process that never terminates. A STOP in an Occam

CONTINUE. SKIP starts , does nothing and terminates.
the IF and CASE constructions. SKIP does nothing, its rather like a "no op" or Fortran
met earlier. We introduce SKIP and STOP now as we will need to use them when discussing
SKIP and STOP are primitive processes. Assignment is another primitive process that we

SKIP and STOP

1 CONTINUI-:

IRRAY(J)= 0

DO 1 J=1, 100

bmizwsxou IRRAY(lOO)

The equivalent Fortran would be.

array[i]:—0
stag i=0 FOR 100
[100] INT array

An example of how to zero an array:

replicated is longer than one.
The extra SEQ is required whenever the block of statements (component processes) to be

61 OCR Output

with the option.
value of a selector with the value ot a constant expression (a case expression) associated
The CASE selection combines a number of options, one of which is selected by matching the

The CASE Construction

sxxp

TRUE

y:= 1+10

x=1

IF 1=1 Fon 3

IF

by nesting the replicated IF within an outer IF:
We need a catch all in case none of the tests in the replicated IF is satisfied. This can be done

;=3+10

x=3

;=2+1O

x=2

;=1+l0

x=1

IF

This is just equivalent to:

y:= i+lO

x=1.

IF 1=1 Fon 3

A conditional, like a SEO, can be replicated. Example:

The Heplicated IF Construction

SKIP

TRUE

SKIP

TRUE

:=999

Y=3

:=2OO

Y=2

:=lO0

Y=1

IF

X=]_

IF

lFs can be nested to make more complex choices , for example:

lF(l.EQ.2) .1:10
lF(l.EQ.1) J=1

The "equivalent F0rtran" would be:

62 OCR Output

Occam channels are used for all inter-process communications.
Occam program to peripherals, attached to the APOLLO, via channels. Later we will see how
We will introduce the idea of Occam channels and explain how I/O is performed from an

keyboards, screens, etc.
These statements allow programs to access peripherals, such as disks, magnetic tapes,
The Fortran language allows users to perform l/O by means of READ and WRITE statements.

Input/Output

Sum:=x+(y+z)

x:=x+l

z:=z+(x*100)

y==y+x

SEQ

WHILE x <= 100

:=0

:=0

SEQ

XIYI Z, sumINT

Example;

times. The WHILE construct allows looping as long as a given condition holds.
We have seen how a replicated SEO can be used to execute a loop a specified number of

The WHILE Construction

vowel := FALSE

ELSE

vowel := TRUE

Ialllelllill IGI, ful

CASE lectez

It is possible to put more than one CASE expression on a single line, thus:

Note if no match is found a STOP would be performed. Occam provides an ELSE as a catch all.

SKIP

ELSE

x:=x—1

down

x:=x+1

CASE direction

Example;

63 OCR Output

Fig (6).
libraries to perform I/O. These procedures hide the underlying protocol from the user, see
uses a special set of protocols. Normally users make use of procedures from the TDS
input typed on the APOLLO keyboard. Communication between the user program and TDS
"sc¤een·· end up on the APOLLO screen. Values read from the channel "keyboa rr-1·· contain
"keyboard·· are made available to the user program by TDS. Values sent to the channel
One example is a user program running under TDS. Two channels called "screem and

Where do the channels come from and go fo?

chan3 ! fred

chanl ? fred

seo

The following code inputs a value from one channel and outputs it on another:

you are here's your value".
takes a value jane and sends it down a channel called chan3. Think of the l as saying "here

chan3 ! jane

The output process

fred. Think of the ? as saying "where‘s my value".
asks for a value from a channel named chant. When the value arrives it is put in variable

chanl ? fred

The input process
Values can be communicated over channels using the primitive processes input and output.

First Ideas about Channels

b. Communication between different Occam processes in different Transputers.

user program and TDS or between two parts of a user program).
a. Communication between different Occam processes in the same Transputer (between a

i.e. channels are used for

FIG (6)

Taco OCR OutputT800
0mEnOTHER

T800

OTHER

USER TBOO

screen ROOT TRANSPUTER

keyboakd

TDS

INTERFACE APOLLO-ROOT TRANSPUTER

SERVER
As>0LL0D'SK

SCREEN KEYH)ARD

65 OCR Output

A character is read from the keyboard to allow "hello " to be read before returning to TDS.
‘n moves the cursor to the next line.

'c moves the cursor to the first character of the current line.
#USE userio specifies use of the library containing the l/O procedures.

Notes

xead.cha:(keyboard,any)
write.full.st:ing(sc2een,"press any key")
write.full.string(screen,"hello!*c*n")

seo

INT any:

-—#USE userio library containing I/O

screen

Example of I/O Using Occam and TDS to write hello on the

120 FoRMAr(110,Fe.4)

R1=:A¤(6,120> xm, FP
100 FORMAT(/,'STATUS=",I3)

WRITE(5,100) 1s1·A1·

Compare this with some Fortran l/O.

read.echo.real32 floating point read/echo
read.echo.int read and echo integer
read.hex.int read hex integer
read.text.line read a line of text
read.echo.char read/echo a character

Operations via channel "keybca ¤¤1··

move cursor up one line
clear.eos clear screen
newline give new line
write.real32 floating point write
write.fuII.string write string
goto.xy position cursor
write.char write character
write.int write integer

Operations via channel "so¤ee¤··

For example

USERIO Library

The sequential Occam representation of someone knitting a sweater could be as follows; OCR Output

A Knitting Analogy

always easy.
would be naive to pretend that applying parallel processing techniques to real situations is
Transputer and Occam are a first step in the direction of easing the difficulty. However, it
existed to easily synthesize systems comprised of large arrays of processors. The
Until recently, neither the processor hardware nor the programming languages have

an adhoc way, or at great cost and effort. Or perhaps all threel
problem. This has been done in fact, though often for only a small number of processors, in
number of closely cooperating processors working together, ”in parallel", to solve a
sequentially (using timesharing). However, it is often worth looking into the use of a
Very often computers of the traditional type described above mimic concurrent events

its database if you book a seat.
An airline reservation system needs to service many enquiries "concurrently" and change

time".
Every parameter in an industrial plant may need to be monitored "at the same time, all the

output of a gate will depend on values communicated to its inputs.
transistors, the inputs and outputs of the devices are all changing ”simultaneous|y". The
When simulating an electronic circuit, made up of an array of integrated circuits or gates or

problems with intrinsic parallelism in them:
is highly parallel and it is rich in communications. Lets look at examples of computing
are very often employed to model, service and control real world phenomena. The real world
sequential nature. A program has a single thread of control running through it. Computers
other. Most computer languages assume this form of computer hardware and reflect its
Thus the execution of most computer programs is sequential, one instruction after the

tell it what to do. The instructions are passed to the processor one after the other.
numbers are the data to be processed and other numbers are instructions to the processor to
A processor is connected to a memory system which can store numbers. Some of the

Most computers, basically, operate in th6 following way:

Some Basic Ideas About Parallel Processing

APOLLO and the root Transputer.
from a network to the root. An RPC (Remote Procedure Call) is implemented between the
Transputer. TDS offers I/O only on the root Transputer. You yourself have to route any I/O
Note: ln general you should choose to perform all I/O from the same process in the root

too much time learning a whole lot of detail. TDS provides no graphics calls.
l/O calls outside the TDS environment. This is a nuisance and a good reason for not spending
just enough to get by. TDS l/O is specific to TDS! This means you will not be able to use the
which we have not described. It is easy to get confused, so we recommend you learn initially
TDS offers a lot of possible options for screen and keyboard l/O, it also provides file access

Some Concluding Comments about I/O

67 OCR Output

sew sweater

neckchannel ? neck

leftchannel ? leftsleeve
rightchannel ? rightsleeve
bodychannel ? body

PAR

SEQ

neckchannel ! neck

knit neck

SEQ

leftchannel ! leftsleeve

knit left sleeve

SEQ

rightchannel l xightsleeve
knit right sleeve

SEQ
bodychannel ! body

knit body
SEQ

PAR

Lets put these ideas into the Occam knitting program more explicitly:

knitting and parallel processing.
slowest person to finish. Synchronization and communication are important in both parallel
activities are "well balanced” then production is inefficient with everyone waiting for the
all knitting is finished and the four separate pieces given to the sewer. Unless all knitting
There is now a need for synchronization and communication. The sewing cannot start until

processes which are going on in parallel.
Note we have now made use of a new construction, the PAR, to combine the four knitting

sew sweater

knit neck

knit right sleeve

knit left sleeve

knit body

PAR

SEQ

final garment. The Occam for this can be written as follows:
in parallel. Suppose there is one knltter for each of four pieces plus someone to sew the
quicklyl The overall task of producing a sweater could be given to a team of knitters working
some purposes, but supposing time starts to matter. Supposing a new sweater is needed
used folds to describe the different operations required. This sequential approach is ok for
We have used the SEQ construct to emphasise the sequential nature of the knitting and have

sew sweater.

knit neck

knit right sleeve

knit left sleeve
knit body

SEQ

68 OCR Output

processes both at the same time".
the two assignments with a parallel PAR construct which would specify ”do the following
l assignments, which are run in sequence one after the other. However we could also combine
Wehave constructed a compound process made up of two primitive processes, two

b:=a+100

a:=5

seo

INT a, bz

Consider the following simple piece of Occam:

More Formal Aspects of PAH and Channels

FIG (7)

starts

Process 1 Output request

Channel Data copied
Starts

Process O Input request

O
.;...1».»·J4i. '

waits

Process O
Time

Fig (7) shows how synchronisation on channels takes place.
Similarly, an output will not take place between sender and receiver until both are ready.
lf a process asks for input, and no value is ready, then it will wait until one is supplied.

communication but also takes care of synchronization.
same processor or on different processors. The use of channels not only takes care of
processes. Channels are used to pass messages. Channels can link processes running on the
one process can be running at a time and messages can be passed between these concurrent
a larger process. A process starts, performs a series of actions, and terminates. More than
Writing a program in Occam is carried out by combining a number of simple processes into

Occam Processes and Channels

69 OCR Output

b:=c+1OO -- form sum
comm ? c —— give me your value

SEQ

INT b, c

comm ! a —— hexe's my value of a

a:=5

SEQ

INT a

PAR

CHAN OF INT com :

to communicate is the right approach. Thus
only access is permitted. Keeping variables local to component processes and using channels
Shared variables between parallel processes are not encouraged by Occaml Although read

about the time ordering ofthe two components of the PAR.
lf Occam allowed this, what value of”a" would be added to 100? We don't know anything

b:=a+l00 -- this is illegal the compile: will object
SEQ

a:=5

SEQ

PAR

INT a, b

using channels. The following is illegal:
assignment. Communication between the component processes of a PAR should only be done
is required a second channel must be added. You can think of input on a channel as a remote
There is one and only one sender and one and only one receiver. lf a two way communication
A channel is a one way communication path between two processes running in parallel.

cmm OF ANY annie: allows anything to be sent down the channel called annie.

CHAN OF values bert:

PROTOCOL values IS REAL32; INT: BOOL:

CHAN OF [20] INT fred:

Examples of channel declarations and protocols;

protocol. In general you use the PROTOCOL keyword to do this.
subsequent use. When you define what is sent over a channel you are specifying the channel
sent down it. Declaring a channel is like declaring a variable, a declaration must precede
cam: or INT comm; declares a channel called comm and specifies that an integer can be

b:=c+l00 —- form sum as before

comm ? c —- give me your value
SEQ

comm ! a -— heze's my value of a

a:=5

SEQ

PAR

CHAN OF INT comm:

INT a, b, c

A completely trivial example could look like this:

70 OCR Output

one of the alternative processes has been run.
ready to communicate, it does not mean the input has completed. The ALT terminates when
with only the winner's process being executed. Note, channel ready means the sender is
input to become ready. It is a first past the post race between a group of input channels
The ALT watches all the input processes and executes the process associated with the first

process 3

chan3

process 2

chan2

process 1

chanl

ALT

INT x

CHAN OF INT chanl, chan2, chan3

An ALT construction makes choices on the basis of the state of input channels. For example;

process 3

TRUE

process 2

x=2

process 1

x=l

IF

INT x:

construct.

We have seen how to make choices according to the values of variables using the IF

The ALT Construction

Both processes are waiting for input that never comes. The PAR will never finish.
comm2 ! 3

comml ? y

SEQ

INT y

comml ! 2

comm2 ? x

SEQ

INT x

PAR

CHAN OF INT comml, comm2

Be careful to avoid deadlock between two processes running in parallel. e.g.

Dea dlock

have terminated.
Note that the process formed by the PAR construct terminates when all component processes

71 OCR Output

put in a multiplexor (Fig 9).
to have two processes running in parallel both outputting to the screen you would have to
Multiplexors (mux) are important when using TDS and Occam. For example, if you wanted

Fig (8).
later). lf neither channel is ready the process waits until an input becomes available. See
is chosen. Note, an Occam ALT does not specify which alternative is chosen (see PRI ALT
right and passed out to stream. If both are ready at the same time one of the two alternatives
passed to the output channel stream. lf right is ready and left is not then input is taken from
channel called stream. lf left is ready and right is not then input is taken from left and
The code merges the inputs coming from the left and right channels and outputs on a single

stream ! packet
right ? packet
stream ! packet

left ? packet

ALT

warms: TRUE

How to build a Multiplexer

and process 3 is run.
includes a guard, if y>0 and chan3 is ready then the value from chan3 is transferred into x

(y>0) & chan3 ? x

called guards, i.e.
IO be satisfied before any of the alternative processes are run areThe conditions that have

process

(y>0) & chan3

process

iy=2) & chan2

process

& chanlly<0)

ALT

INT x

CHAN OF INT chanl, chan2, chan3

then only chosen if its input is ready and the test is true.
An ALT may include a test in addition to an input, just like IF tests. The associated process is

72

FIG (9)

P2P1

ren [kh/UX)_ right

TDS

FIG (8)

right
right ? packet

stream OCR Output

stream I packet

Ieh
leh ? packet

73

i.e x is a read only quantity.

x:=100 (INT32) this is not allowed OCR Output

SEQ

VAL INT32 x IS y:
INT32 y:

z:=x+1O (INT32) this is allowed

SEQ

VAL INT32 x IS y:
INT32 y,z:

No assignment can be made to this type of abbreviation:

(x"x) + z.
This declares a real32 constant y which contains the current value of the expression

VAL REAL32 y IS (x*x) + zz

z:=99.0 (REAL32)

x:=10.0 (REAL32)

SEQ

REAL32 x,z:

This declares an integer constant x which has the current value of y.

.p:ocess

PAR

VAL x IS y:

y:=32
SEQ

INT32 y:

This declares a constant of value 99.

VAL number.0f.beerS.drunk IS 99 (INT32):

Abbreviations cf expressions is used to specify a name for a constant:

abbreviations of elements.
The Occam distinguishes two types ot abbreviation, abbreviations of expressions and

this is one form of abbreviation.

vAL k IS 1024 (INT32):

we saw the notation for the declaration of constants:
The term abbreviation can be confusing as it means more than one thing in Occaml Earlier

Abbreviations

74 OCR Output

This results in the 3rd i'th row being abbreviated.

[] INT one.d.axray IS two.d.axray[3]:

SEQ

[9][6] INT tw0.d.array:

have:
A part or all of a multidimensional array can also be abbreviated, fig(10). Suppose we

x:=0 This is not allowed
y IS x:

SEQ

INT32 x:

We cannot use name of the variable which has been abbreviated after the abbreviation;

read/write abbreviation, in that you can assign values to the abbreviation.
This declares an array [13]x which is equivalent to the array z[10] to z[22]. This is a

[] INT32 x IS [z FROM 10 FOR 13]:

SEQ

[100] INT32 zz

This declares an integer x which represents the 8th element of the array.

INT32 x IS one.dimensiona1.array[8]:
SEQ

[25] INT32 one.dimensiona1.array:

x is a variable which is used instead of y

x IS y:

SEQ

INT32 y:

variable:
Abbreviations of elements are used to abbreviate elements of an array or to rename a

y:=x+15 (INT32) -- this is not allowed
z;=x+10 (INT32) —- this is allowed

SEQ

VAL INT32 x IS y:
INT32 y,z:

After the abbreviation of y we cannot assign to y :

75 OCR Output

We can make a program more readable; instead of

What use are abbreviations?

as the abbreviation; i.e. the i'th row has been abbreviated.

UC] tWO.d.&I'I&y

then we will have

[il lj] [kl :n¤ee.d.a¤¤ay

lt the original array can be thought of as

will give a two dimensional array [20][30]x.

{1 [1 mw x xs yrs];

Then

[10] [20] [301 INT y:

Also it we have

FIG (10)

0 1 2 3 4 5

76 OCR Output

x:=x+2.5(REAL32)
J. S “]

SEQ

Paoc sub1t1NT 1,j, REAL32 xl

The occam equivalent would be:

END

RETURN

x=x+2.S

1=j

SUBROUTINE sub1(1,j,x)

A procedure in Occam is similar to a FORTRAN subroutine:

Procedures

x[41 :=0 -- not allowed
y:= 0 aHowed

SEQ

INT y IS x[3]:

[10] INT x:

lf you abbreviate an array element, you cannot use or change the other array elements:
The compiler will say 'Cannot write to x'.

x[3] :=0 —— is not allowed.

array, e.g.

This gives a new one dimensional array, however you cannot assign to the elements of the

VAL [] INT x IS tw0.d.a:ray[10]:

SEQ

[20][20] INT tw0.d.array:

Note that you can also have:

only have to calculate the address once for the abbreviation a.
x[10][25][234][453] three times. ln the abbreviated example the Transputer would
unabbreviated example the Transputer would have to calculate the address of
Program execution time can be decreased by abbreviating array elements. In the above

p3=3

n:=a

m:=a

SEQ

INT a IS x[10] [25] [234] [453]:

one could have

=x[10] [25] [234] [453]

=x[10] [25] [234] [453]
=x[10] [25] [234] [453]

77 OCR Output

does not know before hand the size of the array.
SIZE is useful in procedures etc. which are passed arrays as parameters and the procedure

would assign 123 to array.size.

array.size:=SIZE my.array
SEQ

INT array.s;i.ze:
[123] INT my.array:

This is an Occam keyword which returns the size of an array:

SIZE

variables cannot be 'accidently‘ modified in a procedure.
Passing parameters by value 'adds' a level of 'safety' to programs as it means that

my.pm¤ ll —- note the empty ()
SEQ

procedure body

SEQ

PROC my.proc () -— TlOi9 the Gmpty ()

the declaration:
Note that if the PROC does not have any parameter you still have to include the brackets in

called 'passing the parameter by value').
means that x is read only for this procedure and cannot be modified within it (this is

Paoc subl(VAL xm? xl -— note the ‘VAL'

reference') and
allows x to be modified in the procedure (this is called 'passing the parameter by

PROC subllmrr x)

passing parameters:
always modify these variables in the subroutine. ln Occam there are two methods of
Formal Parameters are the variables passed in/out of the procedure. In FORTRAN we can

my.proc(y) -— 2I’ld call
some more statements

my.proc(x) -— 1st call
SEQ

body of procedure

SEQ

PROC my.proc (INT z)

procedure:
Note that the statements are indented wrt the ‘PROC' and that the ':' signifies the end of the

78 OCR Output

which communicates with the APOLLO screen, keyboard etc. Fig (t 1)
An EXE is a 'special' type of program which runs on the first Transputer in the APOLLO
At the moment you have been writing programs for a single processor (known as EXE‘s).

EXE 's and PROGRAMS

Transputer networks are configured.
ln this section we explain how multi Transputer programs are written and how

Multi-Transputer Programs

parameters must be of type VAL i.e. passed by value.
following instructions. The 'RESULT' keyword assigns the value to this result. The formal
The 'VALOF' keyword instructs the Occam compiler that a result will be generated by the

Rasum my.reeuJ.c —- new keyword
body of function using parameter

SEQ

vALoF -- note new keyword ‘VALOF'
INT my.result:

INT FUNCTION my.func(VAL INT parameter)

returns an integer result looks like:
TAN, SORT), i/o libraries etc. A 'simple' function which takes an integer parameter and
The TDS system includes many libraries of functions e.g. mathematical functions (SIN,

z:=SIN(angle) + COS(angle)
z:=SIN(angle)

SEQ

REAL32 z,angle:
#USE snglmath

result to the caller e.g. SlN(x), COS(x), TAN(x) are all functions:
An Occam function is similar to a FORTRAN function and allows a procedure to return a

Funcdons

ip.array[i]:=i
SEQ i=0 FOR SIZE ip.array

seo

PROC my.procedure([] INT ip.array)

79

FlG(12)

FILE I/O

HPOLLD

USER

TRANSPUTER

USER'S PROGRAM OCR Output

etc. and can only perform 'raw‘ link i/o. Fig (12
links should be connected between Transputers. It has no access to the keyboard, screen
Language section which specifies which Transputer a process will run on and how the
A PROGRAM can run on more than one Transputer. It contains a special Configuration

known as an PROGRAM.
An EXE runs on a single Transputer, the code which runs on more than one processor is

FIG (11)

I/O

LINK

'RAW’

FILE I/O

HPOLLU

USER

TRANSPUTER

80

FIG(13)

LINK 2

2 6

LINK 1 OCR OutputLINK 3

0 4

LINK O

4,5,6,7 Input Links 0 to 3
Output Links 0 to 30, 1,2,3

The link.numbers specify the link inputs or link outputs, Flg(13):

is the Transputer link numberlink.number

channel is an occam channel name

tranputer.type is either T2,T4 or T8

number identifies the processor

where:

PLACE channel AT link.number:

PROCESSOR number transputer.type

PLACED PAR

The configuration language uses the statements:

The definition of the types of processors in the network.

The assignment of Occam channels in the processes to physical Transputer links.

Processes to be PLACED on the various processors in the network.

The Occam allows:

Occam as a Configuration Language

81 OCR Output

A PLACED PAR can be replicated, suppose we have some processors in a pipeline, Fig(15):

process2(my.channel)
PLACE my.channel AT link.1.in:

PROCESSOR 2 T8

process1(my.channel)

PLACE my.channel AT link.2.out:

PROCESSOR 1 TB

PLACED PAR

VAL link.1.in IS 5:

VAL link.2.out IS 2:
CHAN OF ANY my.channel:

SC pr0cess2(CHAN OF ANY in.chan)

SC pxocess1(CHAN OF ANY out.chan)

FlG(14)

my.channel

link 1PFKJGESS1 I link 2

T8 TRANSPUTER T8 TRANSPUTER

The details of the PLACED PAR can best be described by an example, fig(14):

82 OCR Output

concurrent processes on the same processor.
lt can only be used for input; lt is always ready to communicate; lt can be shared among

in the following ways:
channel connecting the processor clock to a process. lt is different from a normal channel
of 64us and a high priority clock which counts in ticks of 1us. A timer behaves like a
The Transputer has two internal clocks. A low process priority clock which counts in ticks

Timers

Note: i can be passed as a parameter

pipe.chan[fxom.last.p:oc])
pipe.p:oc(i,pipe.chan[to.next.proc],

PLACE pipe.Chan[f:om.last.pr0c] AT link.1.in:
PLACE pipe.chan[to.next.proc] AT link.2.0ut:

VAL from.last.proC IS i-1:
VAL t0.next.pxoc IS iz

PROCESSOR 1 T8 -- note 'l'

PLACED PAR i=1 FOR 9

master.proc(pipe.chan [0])
PLACE pipe.chan [O] AT link.2.0ut:

PROCESSOR 0 T8

PLACED PAR

VAL link.1.in IS 5:

VAL link.2.out IS 2:

[10] CHAN OF ANY pipe.chan:

SC master.pr0C

SC pipe.p:oc

Then the configuration language will be:
F|G(15)

Iink.2.outlink.2.out Iink.2.out

pipe.chan[O] \ pipe.chan[1] \ pipe.chan[9]

MASTER I ‘ I PIPEPROC I ‘ I PIPEPROC PlPE.PFlOC

PROCESSOFIO \ Pnoctsssom \ Pnocassonz PR00E$$0Rl¤

link.1.in |ink.1.in link-l-in

83 OCR Output

positive integer is thus:
representing the number and the 32nd bit representing the sign (+ or -). The maximum
there is no overflow checking. The Transputer is a 32-bit processor, with 31—bits
They perform the same operation as the corresponding arithmetic operators except that

What use are modulo operators?

The modulo keywords are: mus, Mums, T1MEs

Madulo Arithmetic

clock[0] ? AFTER (now PLUS 1)

clock[O] ? now

[10] TIMER clock:

INT now:

later). Delay will be specified in 'ticks‘. We can also have arrays of timers;
Note the use of the PLUS and MINUS operators, this is a modulo arithmetic operation (see

my.timer ? AFTER (time.now PLUS delay)

and then specifying the time to wait for:

my.timer ? time.now

A delay can be generated by first getting the current time

where wait.time is an integer expression. This will wait until the time equals 'walt.time'

my.t;imex: 2 AFTER wait.t;ime

A process can be blocked until a specified time by using the Occam AFTER keyword:

Delays

0.000064 (REAL32)

execution.time:=(REAL32 ROUND (finish.time MINUS start.time))

my.timer ? finish.time

section of code to time

my.timer ? start.time
SEQ

TIMER my.cimer:

REAL32 executicn.time:

INT stazt.time,finish.time:

To time a section of code:

USGS my.timer ? the.time.now

TIMER my.t;ime1::declaration:

'ticks'. How to use Timer:
A timer counts in ‘ticks', thus reading the clock returns the current value of the timer in

84 OCR Output

indentation as original declaration

as we are back at the same level of

my.vaxiable scope invalid

my.variable scope valid

SEQ

INT my.variable:

the declarations:
to the right and ending when an occam statement returns to the same level of indentation as
are only valid in regions of the program starting directly after their declaration, indented
Associated with each variable name is a region of a program in which it is valid. Variables

Scope

Note the MINUS operator used in the code timing example.

clock ? AFTER (time.now PLUS 1)

correctly:
absolute time #80000000, the use of the PLUS operator would calculate this quantity
However the addition #7FFFFFFF+1 would cause an overflow. We want to wait for the

clock ? AFTER (time.now + 1)

and we want a delay of just one tick, which will be at the time #80000000:

clock ? time.now

#7FFFFFFF:
The same ideas apply with Occam timers. Suppose the timer returned the value

24.55 but 00.55 i.e. the time has ‘wrapped around'.
lf the time is 23.55 (11.55 p.m.) what will the time be in 1 hour? The answer is not
Modulo arithmetic is essential when performing arithmetic with timers. An analogy is:

What use is this?

#80000000

would be

#7FFFFFFF PLUS 1

The use of the PLUS operator will not create an overflow, the result of

greater than the maximum integer representation.
will set the Transputer overflow bit and cause an error, as the number generated is

#7FFFFFFF+1

The operation:

#7FFFFFFF

85 OCR Output

The Occam looks like:

at high priority, the second textually declared process will run at low priority.
The PAR contains only two Occam processes. The first textually declared process will run

use are:

High priority processes are declared using the occam PRI PAR statement. The rules for its

PRI PAR

run to completion or a communication block.
processes are different from low priority processes in that they are not time-sliced, but
priority process will execute and will block the low priority process. High priority
process and a low priority process are ready to execute at the same time then the high
The Transputer has two priority levels for processes: high and low. lf a high priority

Priority Processes

code where local.variable is 200

l0cal.variable:=20O

SEQ

INT local.variable:

-- program

— At this point the scope of Iccal.variable has ended and thus ceases to exist in the

IIIOIG of pI`OglC8m

code where local.variable is 100

local.variable:=100

SEQ

INT l0cal.variable:

allows a name to be re-used for a ’local' variable. e.g.
After the scope of a variable is finished the variable ceases to exist in the program. This

y¤=x+2 —— scope ofxinvalid
:=x+1 —— scope of x valid

SEQ

INT

whereas:

=x+2 —— scope of x valid
:=x+1 -- soone of x valid

5EO

INT x:

86 OCR Output

Soon.

input as the highest priority and the next textually declared input at a lower priority and
The inputs have a 'sliding scale' of priority, starting with the first textually declared

process 3
l0west.pri0rity.input.2 ? z

process 2
lower.priority.input.1 ? y

process 1
high.priority.input ? x

PRI ALT

However, with

process will execute (it is a compiler implementation detail)
If chan.1 and chan.2 are ready at the same time the Occam definition does not define which

process 2
chan.2 ? y

process 1

chan.1 ? x

ALT

process will execute if the inputs to the ALT are ready at the same time. e.g.
Can also assign a priority to processes in an ALT, this is useful so that we can define which

PRI ALT

proc 4 at low priority
seo -- this 'SEQ‘ process is at low priority

proc 3 at high priority
proc 2 at high priority
proc 1 at high priority

PAR -- this 'par' process is at high priority
PRI PAR

How do you get more than one process at high priority?

routines are examples of things which would need to run at high priority.
they should be short and execute quickly. Interrupt service routines or device-driver
As high priority processes will execute to the exclusion of low priority processes then

process 1 will be at high priority, process 2 will be at low priority.

process 2
SEQ

process 1

SEQ

PRI PAR

87 OCR Output

operators;
To allow low level operations on the individual bits in a value, Occam provides bitwlse

Bitwise operations

is not allowed in Occam.
FORTRAN but 'C' and Pascal allow it. It requires dynamic allocation of stack space etc and
Recursion is a term to describe a procedure or process calling itself. It is not allowed in

Recursion not allowed

ln this way an array of channels can be scanned for input.

my.prcc(i)

input.channel[i] ? x[i]

ALT 1=0 FOR 10

[10] INT x:
[10] CHAN OF ANY input.channel:

ALT can be replicated (a variable number of times):

assigning it to sin.values[i].
would give 100 versions of my.procedure running in parallel each calculating the SIN and

my.pr0cedure(i,sin.values[i])

PAR 1=0 FOR 100

:esu1t:=SIN((REAL32 ROUND proc.num)*pi)

SEQ

VAL pi IS 3.142(REAL32):
PROC my.pr0ceduxe(VAL INT proc.num, REAL32 result)

[100] REAL32 sin.values:

#USE snglmath

Replication can be useful for executing the same process or procedure in parallel e.g.

PIOCQSS

PAR 1=0 FOR x -- is NOT allowed

x:=10*x
process usmg x

SEQ

INT x:

But
process -— is allowed

PAR i.=0 FOR 10

workspace is allocated at compile time, you cannot have ‘dynamic‘ generation of processes:
count must be a constant and not a variable. The reason for this is that all Transputer
The replication of PAR is identical to the replication of SEQ except that the replication

Replication of PAR and ALT

88 OCR Output

INT32 TRUNC x - truncated conversion

INT32 ROUND x - rounded conversion

REAL64 TRUNC i —· truncated conversion

REAL64 ROUND i rounded conversion

REAL32 TRUNC i truncated conversion

REAL32 ROUND i rounded conversion

SEQ

INT32

REAL64 y:

REAL32 x:

TRUNCATES bits during the conversion: e.g.
For conversion between data types it can be specified whether the conversion ROUNDS or

x:= INT16 y -- Overflow
y:=#10000 (INT32)
x:= INT16 y -— OK
:=#55 (INT32)

SEQ

INT32 y:

INT16 x:

‘tit' into the specified number of bits:
However, when converting from 64 to 32 or 32 to 16-bit variables, the number must

y:= REAL64 x
j:= INT16 i
i:= INT32 j

SEQ

REAL64 y:

REAL32 x:

INT16 j:

INT32 i:

precisions of the same type:
There are some simple rules for the conversion between data types. For conversion of bit

Conversion of Data Types

'y' would have the value #00001234

y:=x /\ #0000FFFF
x:=#FFFF1234

SEQ

INT x,y:

Bitwisa NOT

><Bitwise EOR
\/Bitwisa OR
/\Bitwise AND

89 OCR Output

the 1989 and 1990 schools.
l wish to thank the many people who contributed to the success of the practical courses at

Gupta.
presented by David Jeffery and I at the 1989 School and revised with the help of Rekha
version of the lectures given by lan Willers and myself. This material was originally
The write up we have provided for the 1990 School proceedings contains an expanded

equipped with at least 4 Transputers.
Personal Computers and in 1990 12 Apollo workstations. Each PC or workstation was
practical exercises were organized in two teaching laboratories. ln 1989 we used 12 lBM
series of formal lectures gave a basic grounding in Occam and a complementary set of
about parallel processing using the Occam language to program arrays of Transputers. A
The 1989 and 1990 CERN Schools of Computing offered students the opportunity to learn

Acknowledgements

Lond. A 326, 377-393 (1988).

D.May, The influence of VLSI technology on computer architecture, Phil. Trans. R. Soc.

A.J.G. Hey, Transputers and Occam, 1988 CERN School of Computing, CERN 89-06

3, April 1990.

Dick Pountain, Virtual channels: the next generation of Transputers, BYTE Magazine, E&W

INMOS, Transputer development system, Prentice Hall, London, 1988.

London, 1987.

D. Pountain and D. May, A tutorial introduction to Occam programming, BSP books,

J.Gal1etly, Occam 2, Pitman Publishing, London, 1990.

Occam 2 Reference Manual, Prentice Hall, London , 1988.

M. Homewood etal., The IMS T800 Transputer, IEEE Micro vol 7., no. 5, October 1987.

Further Heading

of Computing.
Transputer by INMOS and others , but that is another story, maybe at another CERN School
which were originally conceived for sequential programming. This has be done for the
there is a requirement to somehow incorporate parallel processing concepts into languages
program multiprocessors in familiar high level languages such as Fortran and C. Here
about parallel processing. However, in many applications there is a need to be able to
We have seen that Occam and Transputers provide an important starting point for learning

Conclusions

90

CERN, November 1990
Bob Dobinson, ECP Dlv,

Hamilton, Andy Jackson, David Jeffery, Henrik Kristensen, William Lu and Ian Willers.
The following people acted as lab demonstrators; Bob Dobinson, Rekha Gupta, Andy

Apollos.
Brian Martin made a simple but vital adaptor board for plugging Transputer boards into the

be flown in specially from the USA for the 1990 School.
Bob O'Brien did a wonderful job of organizing the Apollo loans, arranging for equipment to

normal patience and tolerance.
Mike Jane of the Rutherford-Appleton Laboratory organized Transputer loans with his

Southampton University and lNMOS loaned us their experts.

INMOS and Transtech provided Transputer boards.

lNMOS and Cresco Data provided Transputer software.

lBM and Hewlett Packard provided personal computers and workstations.

